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For a hyperbolic system with different time scales, initial and boundary conditions can 
be given such that the fast time scale is not initiated. The solutions obtained can be de- 
veloped in an asymptotic series. Computation of this series is done by a difference scheme, 
where the time step is not restricted by the fast time scale. The method is applied to the 
simplest version of the MHD equations. 

1. INTRODUCTION 

Many time-dependent processes in physics and technology are such that time scales 
of different magnitudes are present. If the mathematical model is a hyperbolic system 
of partial differential equations of first order, the different time scales are represented 
by the eigenvalues of the coefficient matrix, with the large eigenvalues corresponding 
to the fast time scale. In many applications the solutions consist of a slowly varying 
part perturbed by a small rapidly oscillating part. In such cases one is often interested 
in the unperturbed solution only. A typical example is the dynamics of the atmosphere 
in meteorology, where the fast gravity waves are small and of no influence on weather 
forecasting. 

Another example comes from plasma physics, where the so-called fast waves of the 
MHD equations in some applications are much faster than the remaining wavetypes. 
If an explicit difference scheme is used for this system, and the primary interest is in the 
slow waves, then the computing time becomes too long because of the stability limit 
on the time step. Therefore some method must be used which permits the use of larger 
time steps. A fully implicit scheme (perhaps with a smoothing term included) is one 
solution to the problem, and is advocated as the best solution by Brackbill in his 
survey article [I]. One can also use a semi-implicit scheme; see, for example, [ll]. 
Recently, a method using the grid as a dynamic variable has been proposed for the 
MHD equations by Jardin et al [9]. 

If an implicit scheme is used with a time step which is significantly longer than what 
would be allowed by the Courant-Friedrichs-Lewy condition, then we can expect 
accurate solutions only if the slow waves are the dominant part of the solution. To be 
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more precise, we require that the derivatives of the solution up to some order p be 
bounded, independently of the magnitude of the large eigenvalues. 

Recently, Kreiss [12,13] has developed a general theory for problems with different 
time scales, and the main result is that p derivatives will be bounded during a certain 
time interval provided p derivatives are bounded initially. In other words, with proper 
initial data and boundary conditions the fast time scale is not initiated. The kind of 
problems we are considering here are characterized by a small parameter E occuring 
in the system of differential equations. Kreiss’ theory for ordinary differential equations 
makes use of asymptotic expansions in terms of E; such expansions have been con- 
sidered also by other authors, for example, in [6-8, lo]. In [5] we proved the existence 
of asymptotic expansions also for partial differential equations, under certain condi- 
tions on the initial data, such that the solutions are smooth independently of E. The 
main idea of this paper is that these expansions should be used also for computational 
purposes. In other words, if we are interested in smooth solutions only, i.e., the cases 
where implicit schemes could be used, then we should use the smoothness property to 
make the computation efficient. We will show, with the one-dimensional MHD 
equations as an example, that this will simplify the computation considerably com- 
pared to those methods where the whole system is integrated in time. An obvious 
way is to solve the reduced problem obtained for E = 0, which corresponds to using 
the zero-order term in the expansion only. However, in many applications, this 
method does not give sufficient accuracy. We will show that higher-order terms can be 
included and the computational procedure will still be efficient. In this way the system 
can be reduced to a smaller subsystem which does not contain the fast waves, and 
therefore can be integrated using a simple explicit difference method. 

In Section 2 we define the problem and the method in general; an analysis of the 
stability is also given both for the differential equations and the difference schemes. 
In Section 3 we define the MHD problem and the method applied to it, and in Section 4 
the numerical experiments are presented. 

2. DIFFERENCE METHODS USING ASYMPTOTIC EXPANSIONS 

We will consider hyperbolic systems in one space dimension, which have the form 

where 
Pii = Aij alax + Eij , i = 1,2;j = 1,2. 

Here E is a small parameter and ui, un are vector functions of x and t with r and s 
components, respectively. 

Aij are matrices which may depend also on ui, u II. It is always assumed that AGO is 
bounded independently of E. 
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If the original form of a given system is not (2. l), then it is assumed that a change of 
variables is made such that form (2.1) is obtained. This procedure is carried out for the 
MHD problem in Section 3. 

There are also initial conditions 

UYX, 0) = f’(x), (2.2a) 

uyx, 0) = f”(x) (2.2b) 

and boundary conditions 

Bou(O, t> = go@), 

m4, t> = g1w> 

(2.3a) 

(2.3b) 

where B, , B, are rectangular matrices, and u is the vector u = (uI, ~~1)~. In [13, 51 
conditions on the boundary conditions are given such that smooth solutions exist 
which can be developed into an asymptotic series. In Section 3 we will investigate 
these conditions for the MHD example. Let us just note here that the reduced problem 
corresponding to E = 0 must be well posed. As an example, consider the problem 

a > 0, 

4x, 0) = f(x), 

u’yo, t) = 0, 

zdyo, t) + wJ(0, t) + cu’3’(o, t) = 0, 

U’l’(1, t) = 0. 

These are well-posed boundary conditions for any fixed E > 0. However, the reduced 
problem is 

uy + a&) = 0, P(x, 0) = f”‘(X), 

$’ = u(3) = 0 cc > 

and in general there is obviously no unique solution to this problem. For a calculation 
made in practice with nonzero but small E, we would get nonsmooth solutions. 

We introduce the truncated formal asymptotic expansion for ZP 

9-l 
#II = c + 

j=O 

into the differential equation. In general, the elements of AZ1 , A,, , E,, , E,, , and Pii 
are expanded in terms of E, and all terms corresponding to each power of E are collec- 
ted and put equal to zero. 



212 BERTIL GUSTAFSSON 

Assume that AS1 , A,, for a given vector function U* are smooth matrix functions of 
ulI, so that we have expansions 

9-l 

A,, = c At;& 
j=O 

9-I 

where A$ and A$ depend on $. , +1 ,..., $j only. In the same way we assume 

9-l 9-l 
FII = c F(i)&, Ezi = c E$‘, i = 1,2, 

5=0 j=O 

Then the equations for 4, are 

A!‘? 40, + E&o + I;(‘) = 0, 

j-1 
(dj-l>t + Ak’)ua’ + E,(:-‘)u’ + 1 A$)($&r 

7c=o 

+ E,‘i’4j-, + F(j) = 0, j = 1, 2 )...) p - 1. 

(2.4) 

For a given vector function u1 Eqs. (2.4) are solved using boundary conditions (2.3). 
The functions +j(X, 0) determine the initial dataf” up to order ED-~ if we want bounded 
derivatives up to order p; see [5]. 

We note that if E = 0 and F” = 0, then (bo, = 0 and apparently all systems in the 
second equations of (2.4) are linear in the unknown variable #j . 

We also write down system (2.4) if all the coefficients Aij and Ei, of (2.1) are constant 
and independent of E: 

Ado, + &do + F” = 0, 

do, + 4~1~s’ i- JW + Azzdw + -%$, = 0, (2.4a) 

(4j-l)t + Azg+j, = 0, j = 2, 3,...,p - 1. 

We now turn to the method of calculation. The problem at hand with the initial 
function determined is to compute a1 and ulI = x;i, e”4j in an efficient way. The 
general approach is to use an explicit difference scheme for the first part of the system 
of differential equations. The time step is restricted essentially by the eigenvalues of 
Al1 only, and this is of course the main point which makes the calculation efficient. 
We do not discuss here the various schemes which could be used, but the leap-frog 
scheme with second- or fourth-order accuracy in the x-direction, possibly with a 
dissipation term included, is one of the candidates; see [l 1, 14,2]. For each time step 
in the general case, one or more systems of ordinary differential equations must be 
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solved. Sometimes this system can be solved once and for all independently of U* 
with t as a parameter as in our MHD example. In other cases the system can be 
solved analytically for the given t-value at each time step. 

Let us assume that the boundary conditions have the form 

C,u’(O, t) = h,‘(t), 

C#(l, t) = h,‘(t); 
(2.5) 

u”(0, t) = @(t, u’(0, t)), 
(2.6) 

u”(l, t) = /&t, u’(l, t)). 

Here (2.6) represents s conditions; (2.2) represents I or fewer conditions such that 
ut + Alluz is well posed with (2.2a), (2.5). 

The general algorithm for computing u(t + dt) when all time levels up to time t 
are known is divided into two main steps: 

1. Advance the difference scheme for 

one step: 

utr + P,,u’ + PIzu” + F’ = 0 

2.41 n+l = C Qp-j _ PI”. (2.7) 

Here stable numerical boundary conditions must be used together with (2.5) such that 
ui(t + At) is defined also at the boundaries. 

2. Solve (2.4) with &, satisfying (2.6) and di = 0 at x = 0, x = 1, j = l,..., 
p - 1. This is done analytically if possible, otherwise by a difference approximation 

Ri4.j = 0, j = 0,l ,***, p - 1. cw 

Boundary conditions (2.6) could also be expanded in terms of 6, such that I& 
satisfies the jth-order part, but there is no disadvantage in letting 4,, satisfy (2.6) 
exactly. 

The time derivatives (&& occuring in (2.4) can sometimes be computed 
analytically, as in our MHD example. They can also be substituted by x-derivatives 
of ai and already computed &s by using the first part of the PDE system, but in general 
it is more convenient to use a difference approximation in time. This general method 
will be treated in the stability analysis below. 

For practical purposes we believe that it is sufficient to consider the casesp = I, 2,3. 
For each case we will first show explicitly that the resulting system of differential 
equations is well posed. Furthermore the stability is analyzed for the corresponding 
approximation based on the second-order leap-frog scheme for (2.7) and centered 
second-order difference approximations for (2.8). Only the Cauchy problem for 

581/36/2-6 
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symmetric constant coefficients is considered, where for the z&equations we require 
zP( &NJ) = 0. The lower-order terms in (2.4a) are disregarded, since they do not 
affect the stability. 

p=l 

This is the reduced problem, and we have 

Therefore 

u 9 = r&, = 0. 

U$’ + A+, = 0, 

and since Al1 is symmetric we get with 

that 

(u, 0) = 1 uTv dx, Ii u II2 = (2.4, u), 

$11 u’ 112 = -2(u’, A,&‘) = 0. 

This leads immediately to 

The approximation is 

g+ _ g-1 

2At 
+ A,,D,u’” + A,,4~“” = 0, 

where D, is the centered second-order difference operator. Since D,,zP” = D,,&,” = 0, 
stability is immediately clear for / h Imax At ==c Ax, where the eigenvalues of A,, 
satisfy 1 Ai 1 ,< I X lmax ; see, for example, [15]. 

p=2 

In this case we have 

and therefore 

I+’ + &U,’ - EA12A;&!12,u~1 = 0. 

A,, and A,, are symmetric and AC2 = A,, . Hence, the matrix A,, - EA&&?& is 
symmetric, and the estimate 

II @>I/ = II 4O)ll 

follows as in the previous case. 
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The approximation for zP = E& satisfies 

and we get 
AzzDocjl” = - EA,,D,u’“, 

U' 
*+1 _ Uln-l 

2At 
-t A,,D,u’” - EA~~A;.A~~D~u’” = 0. 

The stability condition is slightly strengthened; we must require that j i; jmax At < Ax, 
where the eigenvalues xi of A,, - EA,,A~A,, satisfy ) & 1 ,< 1 x jmax . 

p=3 

zP now has the form 

ZP = a& + c”q$ ) 

where #% is defined by 

d2, = --A&$$,, = -A,-,2A,,~,‘~. 

By inserting the expression for zP into the first part of the system we get the system 
for 22 

where 

Cu,’ + Du,I = 0, 

and 

D = Al, - EA~,A&‘A~~ 

are symmetric matrices. C is positive definite and therefore we can define a new norm 
(u, Cu), and obtain 

Hence 

& (u, Cu) = -2(u, Du,) = 0. 

II U(W ,< a@, W)) = a4Oh ww 

d K2 II ml12. 

The numerical calculation of $2 requires in general an approximation of &,. Since 
e2+2 is the last term in the expansion, it does not make sense to require too high 
accuracy; therefore we use a one-sided difference approximation: 

For ~2 we get 

u’ 
?I+1 

- ‘In-l + A,,D,u’” - EA,,A~A~,D,u’” - E~A,,A,-,~A,, 
uI” _ UI- 

2At 
At = 0. 
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Because of the last term the amplification factor will have a magnitude 1 + O(E”). 
However, the increase in the solution will be of no practical importance, since at 
time t the truncation error and the rounding errors are multiplied by a factor e”(E*)t/At, 
which for At = O(E), say, is of order e”tEt). 

If one insists upon having no growing component of the solution, the equation for 
computing 4;” is changed to 

Since &+ ’ is in general not available, we introduce the expression for 42 into the 
equation for UI and obtain 

(I - E2A12A;;A21) “‘“+12;tu”-1 + A&p’” - E‘4,2A&42,D$4’” = 0, 

which is an approximation of the differential equation Cut1 + Du,~ = 0 above. The 
step size is now determined by the eigenvalues of (I - E~A,,A~A,,)-’ (A,, - eA12 
AiifAd. 

3. THE MHD EQUATIONS 

For illustration and in order to test the method we have proposed, the computa- 
tional procedure was applied to a simple one-dimensional problem from plasma 
physics. It describes a plasma surrounded by vacuum which is confined between two 
walls. The equations are 

B vat. j Plasma I vat. E 

Pt + VP2 + pv, = 0, 

a2 
L’f + p p;t + 2’21, + 

B 
__ B, = 0, 
4WP 

Bt -+ Bv, + uBz = 0, 0 < x f a(t), 

where the dependent variables are p = density, v = velocity, B = magnetic induction 
field. a is the speed of sound, p is the permeability. We have assumed constant entropy, 
and that the pressure is defined by p = Apy, where A and y are given constants. In 
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this way the speed of sound is defined by a2 = Aypy-l. LX(~) is the distance between 
the center and the plasma/vacuum interface. It is defined by 

where 01~ is the initial radius. 
The boundary conditions are 

v=o at x = 0, (3.2a) 

87rpAp~ + B2 = g(t) at x = 01. (3.2b) 

Here (3.2b) denotes the fact that the total pressure is continuous across the plasma- 
vacuum interface; the magnetic field in vacuum is a given function of time. 

The variables are made dimensionless by 

from which we get the new system 

Pt + : [(v - V(l) t>x) pr + pv,] = 0, 

vt + ‘0 
[ 

1 
2 2-y 

Oz MllP 
PZ + (0 - ~(1, t>x) u, + -$ B$] = 0, 

Bt + $ [Bv, + (a - ~(1, t)x) Bz] = 0, 

J 

t 
01 = 010 v(l,t)dt+a,. 

0 

(3.3) 

Here we have dropped the “hats,” so that x, t, p, v, B are the new variables. a: is a 
function of t; therefore differentiation with respect to time produces an extra term 
a’(t) %(8/8x) = ~(1, t) S(a/ax), and this is the reason for the modified diagonal 
coefficients. E is a small parameter representing the inverse of the Alfven number, and 
is defined by 

6 = 2 (47rppo)1/2. 
0 

The Mach number AI, is defined by 

M,, = v,,/a,, = v,/(AY~,Y-~)~~~. 
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The coefficient matrix for the space derivative is with v” = u - ~(1, t) x 

A ==+o;z-y f +I, 
which has the eigenvalues 

A, = : fi’, 

A,,, = z (6 + ($ + -g)‘;“). 

We introduce the new variable fi by B = 1 + EB and get the new system 

where w  = (p, v, B)T, 

The boundary conditions are 

v=o at x = 0, (3Sa) 

2E PO 2 y-1 $$ py + (1 + 42 z g@-J = 1 + @F(t) at x=1. (3.5b) 

At this point we check the conditions stated in [5] for the linearized version of (3.4), 
(3.5) with constant coefficients, such that the asymptotic expansion exist. We put 
S! = 0 in A(w) since B vanishes at both boundaries. A simple scaling of the variables 

where fi denotes the constant value of p in n(w), gives A(w) a symmetric form A^. The 
orthogonal matrix T containing the eigenvectors of A” can be shown to have the form 
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where the tijs are bounded for small .+values, and TTAT = A is diagonal. The trans- 
formed system is with W = Fw = (WI, W, , W,) 

w, = 0, c > 0. 

The linearized homogeneous boundary conditions expressed in the new variables 
have the form 

w, = w, at x = 0, 

W,= -W,+beW, atx= 1, 

but since W,(l, t) = W,(l, 0) it is sufficient to consider the condition 

w,= -w, atx= 1. 

The inequality required in [5] leading to an energy estimate can be expressed as 

RWJK (~,l~> fl W,) < -%I W,(O, t>12 + I W&l, t>12 + C I/ W 112, 

where (., a) denotes some scalar product, and 11 * 11 the corresponding norm. 
We define for real functions 

Wf2’ dx, 

where e(x) is a smooth function. We get 

w, nw,) = f w2a tj2 - w,(L t12 - e(o) w&t o2 + e(l) W&l, g21 
c l -- s E 0 

W~~W~zdx--j-1i9~W~2dx. 
E 0 

By choosing e(O) = 1 + E, 0(l) = 1 - E, we can construct e(x) such that 1 &,&)I = 
Q(E), and the required inequality is obtained by using the boundary conditions. 

For the original problem (3.4), (3.5) it is now assumed that the time derivatives of 21 
and B up to orderp are bounded for small E. The formal expansions 

Y-l 

v = c Vj&, 
i=O 

(3.6) 



220 BERTIL GUSTAFSSON 

are inserted into the second and third differential equation, all terms with the same 
power of E are collected, and the sum is put equal to zero. For a given function p the 
resulting equations are solved using for u the boundary conditions 

Vj(0, t) = 0, j = 0,l ,...,p - 1. 

For B the boundary conditions are obtained from the expansion of the condition 

B(l, t) = (l/E)((l + Eg’Q) - 2+&(1, t>“/fQ)ll2 - 1) 5% 0(t), (3.7) 

where the first terms are 

8,(1, t) = d&Q 

&(l,t) = I~+,(I,+@. 
V02 

Since V(X, t) = O(E), it is seen from the first equation in (3.3) that pt = O(E), and 
therefore we have at the boundary 

&$(L 0 = --g”(t) g’(W. 

The first functions in the expansions are now easily obtained. 

v tx t) = 4) , g”(Og”‘W x, 
2 3 

a0 2 

The initial conditions are restricted such that (3.6) is satsified for t = 0. We could add 
terms of order l 2, to these expansions, but the essential freedom in the choice of 
initial data is that p(x, 0) can be chosen arbitrarily. 

We will now discuss the solutions to the full system in some detail, depending on 
the number of terms in the expansions. 

1. v=uo,B=fjo 

This case is equivalent to setting E = 0 in the original system. The assumption is 
that the first-order time derivatives are bounded, and apparently this requires that 
g”‘(t) be bounded. The initial conditions are 

4x9 0) = O(4, 

&, 0) = ‘f(O)/2 + O(E). 
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The solution in this case is trivial and has an error of order E: 

p(x, 0 = p(x, O), 

u(x, t) = 0, 

ex, t> = .m/2, 
a(t) = 010 . 

(3.8) 

Obviously, solving the reduced problem does not give any detailed information about 
the solution except if E is very small. 

2. v = v. + EV1 , Pg = B. + EB* 

In this case the time derivatives of order 2 are assumed to be bounded. This requires 
that d”(t) be bounded and that the initial conditions take the form 

v(x, 0) = -0.5Eg(o)x + O(E2), 

B(x, 0) = q + E (& (p(l, o)y - p(x, 0)‘) - gq + p(1, o)v -@+) 
vo 

+ O(4. 

Since v is a linear function of x, the first equation of the system takes the simple 
form 

pt - $ Ep = 0. 

The equation for 01 is 
da -=-- 
dt 2;. .r% 

and we can easily write down the complete solution: 

p(x, t) zz.z e(f12)(H(t)-~(0))P(X, O), 

v(x, t) = -e -k/zn,)k?W-H(O)) g’(t) EX, 

&, t) = gq + E [+ (p(l, l>’ - /4x, 09 - q-j 4 p, 

(3.9 

a(t) = e- k/zLQ(m-Ho)) 
010 

(the constant p is in the numerical experiments chosen such that the boundary condi- 
tion (3.7) is satisfied exactly). 

If we are interested in raising the accuracy for v only we can add the v,-term: 

v(x, t) = - ; g”‘(t) EX(1 - E@)) + ) 

@) = e-~f/2~~~~~t~-~~o~~+~f2/4a,~~Io21(0)20 
(3. IO) 
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4. NUMERICAL RESULTS 

In this section we present results from a number of numerical experiments with 
system (3.1). 

These experiments are designed to show two things: 

(1) The importance of initialization. Implicit schemes with large time steps 
work properly only if the initial data are chosen such that the time derivatives are 
bounded (the fast scale not initiated). This is shown in experiments A, B, and C. 

(2) The scheme of type (2.7), (2.8) using asymptotic expansions computes the 
solution efficiently if the fast scale is not present. This is shown in experiments C, D, 
and E. 

The problem is first solved by integrating the complete system using an explicit 
difference scheme with a fine mesh. In that way we obtain an almost exact solution to 
use for comparison. An implicit method is then used for the complete system with the 
time step chosen to fit the slow time scale, which is, in our example, controlled by the 
boundary data. It is shown that the implicit scheme gives erroneous results if the 
initial conditions are not chosen properly. This is not very sensational, but we also 
show that it is not sufficient to choose these conditions such that the reduced problem 
is satisfied initially (0,(x, 0) = &(x, 0) = 0). 

The proposed method, using asymptotic expansions with the first few terms in- 
cluded only, is for our example very simple to use, and the solutions can be computed 
analytically, which has been done in Section 3. 

However, in order to study the properties of the discrete method, we ran a scheme 
based on the leap-frog scheme corresponding to (2.7) and the trapezoidal rule cor- 
responding to (2.8). In order to get a case where the first two terms in the expansion 
cannot be obtained analytically, we also ran a case where Eq. (3.4) was modified by a 
forcing function: 

wt + A(w) w, + F = 0, F = (Fl , clFs , e-‘F#-. (4.0 

The scheme is: 

g+1 - &-I 

2At 
+ 3 (d;+lDopjn + pjnDoujn) + Flj = 0, 

p+1 
D-jj;j:l + olo p”+lF;,:l = 0, &z = Qn+‘, 

D+u,n+’ + 
#p+1 
-F;>:’ = 0, 

010 
,I+’ = 0, 

?a+1 
D-al, + ,$ [gc+l - uo", ;A%l - %L 

1 I 

Mo2jpY D& + i?oD-60 

8. 
(4.2) 

+ f D-h, + $ D-Boj] = 0, St; = 0, 
3 3 
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V 
n+1 = ,;+I + Ev;+l, B -n+1 _ 

B;+l + &;+l, 

(++1- oln 0 

At 
= agv*T . 

Here the caret over a variable denotes an average over the time levels tn and P+l, 
FP+l is defined by linear extrapolation using the previous time levels. D, , D- denote 
the forward and backward divided difference operators, respectively. One-sided 
second-order difference operators were used for v in the equation for pN . 
The results obtained by this scheme are labeled A-E-d. The analytically obtained 
results for the case F = 0 are labeled A-E-a. 

Throughout the experiments the following values on the physical constants were 
used: 

vg = 105, 

B, = 23, 

010 = 1, 

y = 1.67, 
A = 5.553 . 1014, 

p = 10-4 

Two different values for the reference density p0 were used: 

p,, = 1.67 - lo-' 

giving the dimensionless constants 

and 

giving 

M,, = 0.61202, E = 0.062985, 

p. = 1.67 . 1O-g 

Al,, = 2.6042, E = 0.0062985. 

To calculate the solutions numerically for the full system we have used the DCG 
system, described in [3], to generate the explicit leap-frog scheme and the implicit 
Crank-Nicholson scheme. 

The DCG system in its present form does not accept symmetry conditions leading 
to derivative boundary conditions for hyperbolic systems. Therefore the problem was 
defined on the interval -1 < x < 1 with symmetric initial functions for p, B and 
antisymmetric initial velocity. The numerical boundary conditions can be chosen by 
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DCG such that the outgoing characteristic variables are extrapolated using also 
previous time levels. For our application these conditions have a poor accuracy and 
give rise to an initial jump in the solution. Since it is of interest in more general cases, 
we will explain this behavior. 

One of the characteristics corresponds to the eigenvalue (0(x, t) - ~(1, t) x) a/a0 , 
which is zero at the boundaries. Therefore the appropriate model equation is 

for which we will study the behavior near the boundary x = 0. The first step is 
computed by 

At 
ujl = h + 2dx aj(h+l -h-l), j = 1, 2,..., 

uo 
l- 

-fo. 

All later steps are computed using the leap-frog scheme with the stable boundary 
condition 

pt1 - zu n _ p-1 
0 -1 2 . 

The local truncation error for this condition is 

~(0, tn+l) - u;+l = (Ax2 + At2) ~~~(0, t”“) + O((Ax2 + Az~)~/~), 

where .$ is the coordinate along the lines 1 + (At/Ax) x = const going through the 
meshpoints. For a system like the one we are considering in this paper, the mesh is 
chosen such that 1 X lmax At/Ax < 1, where I X I max is much larger than max, / a(x)1 . 
Therefore, z&O, t) is not small even if a(O) is zero and the error becomes quite large 
compared to the error at inner points. However, for the first step the error at the 
boundary is zero; uol equalsf, , which is the correct value. The typical result with these 
boundary conditions is therefore a jump after the first step and then a smooth- 
looking solution. In Fig. Fl the density at the boundary is shown as a function of time 
for the case described in D, but with p. = 1.67 . IO-‘. 

In this figure we also show the result when the extrapolation procedure is replaced 
by the use of one-sided difference operators at the boundary. For our model example 
we obtain 

n+1 
uo = 2.40 n-1 + 2u, g (Uln - Zion), 

which leads to an unstable scheme for scalar equations and general functions u(x); 
see [4]. However, in our case we have a, = 0, and also taking the first step into 
consideration the above condition reduces to u:+l = uon, and we get the exact solution 
at the boundary for all times. 
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In our problem one-sided differences were used for the first two equations, and 
together with the physical boundary condition this defines the complete solution at the 
boundary. In [2] one-sided differences were used for a similar system. 

In all the experiments g(t) has the form 

s(t) = go . G(t), G(0) == I, 

go = (2+;-1A/C,2 + 1) I?,“. 

In this way the conditions ~(1, 0) = 1, B( 1,O) = 0 are compatible with boundary 
condition (3.5b). 

The initial values for the density are 

p(x, 0) = 0, 9 + 0.1 cos 27rx 

in all cases. 
To limit the number of figures, we have chosen to present the boundary location 01 

as a function oft, and the velocity u as a function of X. 
The result of the leap-frog run representing the exact solution is represented in all 

figures by a solid line. The time step is chosen automatically by the DCG system to 
satisfy the stability criterion. In cases A, B, C, dt Q! 0.004 was used, in case D, 
At = 0.0004. The following experiments were performed. 

A 

p. = 1.67 . 1O-7 (E = 0.062985), 

g(t) = g,[1.05 + 0.05 sin(O.%.rrt - r/2)] for t < 1, 

21(x, 0) = 0.2 sin 27rx, 

B(x, 0) = 0.2(1 - cos 2%-x), 

Ax = 0.1. 

The initial data do not satisfy the reduced problem, and the solution is nonsmooth. As 
could be expected, the Crank-Nicholson solution with At = 0.05 is very poor also for 
the integrated quantity CK; Figs. Al, A3. With the shorter time step At = 0.025 the 
result is slightly better for LX, but v is completely wrong; Figs. A2, A3. Also looked 
upon as a function oft, u has large errors; at x = 1 this is seen by studying the deri- 
vative of ti in Fig. A2. 

B 

As in A but with 

u(x, 0) = 0, 

B(x, 0) = 0, 

Ax = 0.05. 
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0.994 , I , ( , , , ( ) I 

0.00 1.00 

FIG. Al. a(t) for case A computed by the leap-frog scheme (L-F), and by the Crank-Nicholson 
scheme with At = O.OS(C-N(O.05)). 

:. 
:a . . . . . . 

FIG. A2. a(r) for case A. L-F and C-N(O.025). 
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L-F 

C-N (0.02 5) 

0.00 1.00 

FIG. A3. u(x, 1) for case A. L-F, C-N(O.05) and C-N(O.025). 

FIG. Bl. “(2) for case B. L-F and C-N(O.05). 
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l.OOC- 

0.990-r , I 4 I I 1 ’ ’ ’ ’ 

0.00 1.00 

FIG. B2. a(t) for case B. L-F and C-N(O.025). 

_ //‘------- 
, --__ 

-. 

---- - C-N (0.05) 

- 0.06 . * I I I I 1 I I , 

0.00 I.00 

FIG. B3. tfx, 1) for case B. L-F, C-N(0.5) and C-N(O.025). 
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The initial data satisfy the reduced problem. The Crank-Nicholson u-solutions are 
still very poor approximations as can be seen in Fig. B3. The ar-solution using dt = 
0.05 is also poor; with the smaller time step the error is smaller but still noticeable. 

C 

As in B but with 

JG, 0) = [p(l, w - p(x, WI dYM2 
= [I - (0.9 + 0.1 cos 2?TxP] e/yM2. 

These initial data guarantee that the time derivatives up to second order are bounded. 
The Crank-Nicholson solutions are quite accurate and cannot be distinguised from 
the true solution in Fig. Cl. The oscillations in u for the Crank-Nicholson solution 
are small in absolute magnitude, and are due to the fact that the initial values 
are defined analytically, not by using the difference scheme. 

The solution obtained from the asymptotic expansions is very accurate and cannot 
be distinguished in the figure for 01. We obtain 

a(1) = 0.99518 when using (3.9), A-E-a, 

ar(l) = 0.99517 when using (3.9), A-E-D, 

ar(1) = 0.99526 when using (3.10), A-E-a. 

0.00 1.00 

FIG. Cl. u(t) for case C. L-F and C-N(O.05). 

5w3+7 
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-0.01 .! , , , , , , , , 1 , 

0.00 1.00 

FIG. C2. u(x, 1) for case C using L-F, C-N(O.O5), and C-N(O.025). 

0.00 

‘i. 
< . 
\ \‘. L-F 

\**. A-S (3.10) 
‘A-E(3.9) 

-0.01 11 1 I I I I I I -I 

0.00 1.00 

FIG. C3. D(X, 1) for case C. L-F, A-E (3.9), and A-E (3.10). 
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These values should be compared to the “exact” solution produced by the leap-frog 
scheme 

a(l) = 0.99523. 

In the figures we have not distinguished between A-E-a and A-E-d since they are in all 
cases very close to each other. 

The following table shows the normalized computing time for the three methods 
used. 

A-E-d, LJt = 0.05 1 

C-N, full system, dt = 0.05 15 

L-F, full system, dt m 0.004 12 

No attempt was made in either case to optimize the codes. 

D 

p,, = 1.67 - 1O-s (E = 0.0062985); 
g(t) = gJ1.05 + 0.05 sin(27rt - 7r/2)] for t < 0.5, 

= 1.1 g, for 0.5 < t < 1; 

v(x, 0) = 0; 

B(x, 0) = [I - (0.9 + 0.1 cos 2?7X)v] E/yW. 

L-F, A-E (%.2) 

A-E (3.10) 

0.00 060 

FIG. Dl. a(t) for case D. L-F, A-E (3.10), and A-E (4.2). 
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-0.15 
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(u.2) 

(3.10) 

FIG. D2. u(x, 0.3) for case D. L-F, A-E (3.10), and A-E (4.2). 

In this case g”(t) is of the order e--l, and we must expect that the G-error obtained 
with (3.9) is reduced to an error of order E. This might still be good enough since E is 
small, and the result is shown in Figs. Dl and D2. 

For this problem, the variable substitution B = 1 + EB should be changed to 

(which could have been used also for the previous problems). In this way, we obtain a 
modified version of the third equation, which will now contain an inhomogeneous 
t-dependent term. We do not write down all the formulas here, but the result for v 
and (Y, using the first two terms in the expansions, is 

(4.2) 

These formulas give very accurate results, and for 01 the curve cannot be distinguished 
from the true one in Fig. D2. 

E 

This experiment used the same data as C, but a forcing function 

F = (0, ; (1 _ @.ss*), f #)’ 

was introduced. The true solution and the one obtained by (4.2) are shown in Fig. El. 



0.8. 

0.7. 
, 

:-Z&i 
, 

0.5 1.0 

FIG. El. a(t) for case E. L-F and A-E-d. 

0.5 1.0 

-0.6. 

-1.0 . 

FIG. E2. v(x, 0.9) for case E. L-F and A-E-d. 

1. 10 

L-F tOJO) 

1.00 

0.00 I. 00 

FIG. FL ~(1, t) for case C. Leap-frog scheme using extrapolated values at x = l(L-F(EX)) and 
one-sided differences at x = 1 (L-F(OSD)). 
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5. CONCLUDING REMARKS 

The ideas put forward in this paper can be summarized as follows. If for a certain 
problem one is interested in the slow variations of the solution only, then the rapidly 
varying part should not be present, i.e., the solution should be smooth. This is the 
condition under which implicit schemes can be used with long time steps and it 
requires that the initial values be chosen properly. However, the smoothness property 
of the solutions should be used in the form of asymptotic expansions, such that a more 
efficient solution method is obtained as outlined in this paper. For systems in one 
space dimension we think that it is quite clear that this method in most cases is 
superior. In the multidimensional case the elliptic subproblems which must be solved 
in each time step are more complicated. However, these systems are smaller than the 
complete system, therefore we can still expect an efficient method. We believe that for 
a given large system where high efficiency is required, the method arising from the use 
of asymptotic expansions should be used, and each step be carefully analyzed such 
that one can make use of all possible simplifications. The asymptotic expansions could 
also be used in order to solve the equations arising from a semi-implicit scheme in an 
effective way. We will further investigate these matters in a forthcoming paper. 

We also want to stress the point that the equations to be solved in our method do 
not have any l/E-factors in the coefficients. If the full system is solved, these factors can 
cause severe numerical difficulties, since truncation errors and rounding errors are 
affected by these large factors. Furthermore no filtering is required, the method 
automatically chooses the slow time scale even for nonlinear problems. 
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